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1. Prove Dirichlet’s principle for the Neumann boundary condition. It asserts that among all real-valued

functions w(x) on D the quantity
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is the smallest for w = u, where wu is the solution of the Neumann problem

—Au=0in D, Ou _ h(x) on bdy D
on

It is required to assume that the average of the given function h(x) is zero (by Exercise 6.1.11).

Notice three features of this principle:
(i) There is no constraint at all on the trial functions w(x).
(ii) The function h(x) appears in the energy.

(iii) The functional Efw] does not change if a constant is added to w(x).

(Hint: Follow the method in Section 7.1.)

Solution: Suppose u(x) solves the above problem, w is any function and let v = u — w, then
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which implies

2. Give yet another derivation of the mean value property in three-dimensions by choosing D to be a
ball and xg its center in the representation formula (1).

Solution: Choosing D = B(xg, R) in the representation formula (1) and using the divergence theorem,
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3. Theorem 2 on P181: The solution of the problem

Au=f inD wu=h ondD

= [ s

X # Xp, then Av(x) = 0,x # xg. Let D, = D \ Be(xo).
Applying Green’s Second Identity to v and u on D, we have
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Noting that 0D, consists of two parts and on {|x — xo| = r = €}, % = —%, we have

ov ov 1 3 ou
// ———dS // ———dS _4m2//r udS—m//TedS i

where 7w denotes the average value of v on the sphere {r = ¢}, and % denotes the average value of g—ff

is given by

Solution: Let v(x) =
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on this sphere. Since u is continuous and % is bounded, we have

- — ea—u — —u(xp) ase— 0.

or

So let € tend to 0 and then we have
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Suppose G(x,Xg) is the Green’s function for —A, then H = G — v is a harmonic function on D, and
G =0 on 0D. Applying the second Green’s Identity to u and H on D, we have
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Adding (2) and (3) and using G = H +v in D,G =0 on 9D , we get
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That is,



