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1. Prove Dirichlet’s principle for the Neumann boundary condition. It asserts that among all real-valued
functions w(x) on D the quantity

E[w] =
1

2

∫∫∫
D

|∇w|2dx−
∫∫

bdy D

hw dS

is the smallest for w = u, where u is the solution of the Neumann problem

−∆u = 0 in D,
∂u

∂n
= h(x) on bdy D.

It is required to assume that the average of the given function h(x) is zero (by Exercise 6.1.11).

Notice three features of this principle:

(i) There is no constraint at all on the trial functions w(x).

(ii) The function h(x) appears in the energy.

(iii) The functional E[w] does not change if a constant is added to w(x).

(Hint: Follow the method in Section 7.1.)

Solution: Suppose u(x) solves the above problem, w is any function and let v = u− w, then

E[w] = E[u− v] = E[u]−
∫∫∫

D
∇u · ∇vdx +

∫∫
∂D

hvdS +
1

2

∫∫∫
D
|∇v|2dx

= E[u]−
∫∫

∂D

∂u

∂n
vdS +

∫∫∫
D

∆uvdx +

∫∫
∂D

hvdS +
1

2

∫∫∫
D
|∇v|2dx

= E[u] +
1

2

∫∫∫
D
|∇v|2dx

which implies
E[w] ≥ E[u].

2. Give yet another derivation of the mean value property in three-dimensions by choosing D to be a
ball and x0 its center in the representation formula (1).

Solution: Choosing D = B(x0, R) in the representation formula (1) and using the divergence theorem,

u(x0) =

∫∫
∂B(x0,R)

[
−u(x) · ∂

∂n
(

1

|x− x0|
) +

1

|x− x0|
· ∂u
∂n

]
dS

4π

=

∫∫
|x−x0|=R

[
1

R2
u(x) +

1

R

∂u

∂n

]
dS

4π

=
1

4πR2

∫∫
|x−x0|=R

udS +
1

4πR

∫∫∫
|x−x0|<R

∆udx

=
1

4πR2

∫∫
|x−x0|=R

udS.
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3. Theorem 2 on P181: The solution of the problem

∆u = f in D u = h on ∂D

is given by

u(x0) =

∫∫
∂D

h(x)
∂G(x,x0)

∂n
dS +

∫∫∫
D
f(x)G(x,x0)dx

Solution: Let v(x) = − 1
4π|x−x0| ,x 6= x0, then ∆v(x) = 0,x 6= x0. Let Dε = D \Bε(x0).

Applying Green’s Second Identity to v and u on Dε, we have∫∫∫
Dε

−vfdx =

∫∫∫
Dε

u∆v − v∆udx =

∫∫
∂Dε

[
u · ∂v

∂n
− ∂u

∂n
· v
]
dS

Noting that ∂Dε consists of two parts and on {|x− x0| = r = ε}, ∂
∂n = − ∂

∂r , we have∫∫
r=ε

u
∂v

∂n
− ∂u

∂n
vdS = −

∫∫
r=ε

u
∂v

∂r
− ∂u

∂r
vdS = − 1

4πε2

∫∫
r=ε

udS − 1

4πε

∫∫
r=ε

∂u

∂r
dS = −ū− ε∂u

∂r

where u denotes the average value of u on the sphere {r = c}, and ∂u
∂r denotes the average value of ∂u

∂r

on this sphere. Since u is continuous and ∂u
∂r is bounded, we have

−u− ε∂u
∂r
→ −u(x0) as ε→ 0.

So let ε tend to 0 and then we have∫∫∫
D
−vfdx =

∫∫
∂D

[
u · ∂v

∂n
− ∂u

∂n
· v
]
dS − u(x0) (1)

Suppose G(x,x0) is the Green’s function for −∆, then H = G− v is a harmonic function on D, and
G = 0 on ∂D. Applying the second Green’s Identity to u and H on D, we have∫∫∫

D
−Hfdx =

∫∫∫
D
u∆H −H∆udx =

∫∫
∂D

[
u · ∂H

∂n
− ∂u

∂n
·H
]
dS (2)

Adding (2) and (3) and using G = H + v in D,G = 0 on ∂D , we get∫∫∫
D
−Gfdx =

∫∫
∂D

[
u · ∂G

∂n
− ∂u

∂n
·G
]
dS − u(x0) =

∫∫
∂D

h
∂G

∂n
dS − u(x0)

That is,

u(x0) =

∫∫
∂D

h
∂G

∂n
dS +

∫∫∫
D
Gfdx
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